Existence of Solutions for Integrodifferential Equations of Fractional Order with Antiperiodic Boundary Conditions
نویسندگان
چکیده
منابع مشابه
Existence of Solutions for Integrodifferential Equations of Fractional Order with Antiperiodic Boundary Conditions
Recently, the subject of fractional differential equations has emerged as an important area of investigation. Fractional differential equations arise in many engineering and scientific disciplines as the fractional derivatives describe numerous events and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, and so forth. For some rece...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملExistence of Solutions for Fractional Differential Inclusions with Antiperiodic Boundary Conditions
We study the existence of solutions for a class of fractional differential inclusions with anti-periodic boundary conditions. The main result of the paper is based on Bohnenblust-Karlins fixed point theorem. Some applications of the main result are also discussed.
متن کاملExistence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions
متن کامل
Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Differential Equations
سال: 2009
ISSN: 1687-9643,1687-9651
DOI: 10.1155/2009/417606